Elevated MARK2-dependent phosphorylation of Tau in Alzheimer's disease.

نویسندگان

  • Gucci Jijuan Gu
  • Di Wu
  • Harald Lund
  • Dan Sunnemark
  • Alexander J Kvist
  • Roy Milner
  • Sonia Eckersley
  • Lars N G Nilsson
  • Karin Agerman
  • Ulf Landegren
  • Masood Kamali-Moghaddam
چکیده

The appearance of neurofibrillary tangles (NFT), one of the major hallmarks of Alzheimer's disease (AD), is most likely caused by inappropriate phosphorylation and/or dephosphorylation of tau, eventually leading to the accumulation of NFTs. Enhanced phosphorylation of tau on Ser(262) is detected early in the course of the disease and may have a role in the formation of tangles. Several kinases such as microtubule-affinity regulating kinase (MARK), protein kinase A, calcium calmodulin kinase II, and checkpoint kinase 2 are known to phosphorylate tau on Ser(262) in vitro. In this study, we took advantage of the in situ proximity ligation assay to investigate the role of MARK2, one of the four MARK isoforms, in AD. We demonstrate that MARK2 interacts with tau and phosphorylates tau at Ser(262) in stably transfected NIH/3T3 cells expressing human recombinant tau. Staurosporine, a protein kinase inhibitor, significantly reduced the interaction between MARK2 and tau, and also phosphorylation of tau at Ser(262). Furthermore, we observed elevated interactions between MARK2 and tau in post-mortem human AD brains, compared to samples from non-demented elderly controls. Our results from transfected cells demonstrate a specific interaction between MARK2 and tau, as well as MARK2-dependent phosphorylation of tau at Ser(262). Furthermore, the elevated interactions between MARK2 and tau in AD brain sections suggests that MARK2 may play an important role in early phosphorylation of tau in AD, possibly qualifying as a therapeutic target for intervention to prevent disease progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2.

Tau protein plays an important role in neuronal physiology and Alzheimer's neurodegeneration. Its abilities to aggregate abnormally, to bind to microtubules (MTs), and to promote MT assembly are all influenced by phosphorylation. Phosphorylation of serine residues in the KXGS motifs of Tau's repeat domain, crucial for MT interactions and aggregation, is facilitated most efficiently by microtubu...

متن کامل

PAR-1 Kinase Plays an Initiator Role in a Temporally Ordered Phosphorylation Process that Confers Tau Toxicity in Drosophila

Multisite hyperphosphorylation of tau has been implicated in the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD). However, the phosphorylation events critical for tau toxicity and mechanisms regulating these events are largely unknown. Here we show that Drosophila PAR-1 kinase initiates tau toxicity by triggering a temporally ordered phosphorylation process. PAR-1 ...

متن کامل

P 142: Air Pollution\'s Triggering Role in Tau Protein Hyper Phosphorylation; A Sign of Alzheimer Disease

Nowadays, air pollution is one of the major problems in developed and developing countries. In recent years, effects of air pollution on neuroinflammatory diseases such as Alzheimer disease and Parkinson disease have been studied. Researches on polluted cities citizens indicate increasing in central nervous system (CNS) inflammatory factors in comparison with clean cities; also air pollution ex...

متن کامل

P 97: Neurodegeneration Induced by Tau protein

Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...

متن کامل

Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1.

Early hallmarks of Alzheimer's disease include the loss of synapses, which precedes the loss of neurons and the pathological phosphorylation and aggregation of tau protein. Mitochondrial dysfunction has been suggested as a reason, but evidence on the role of tau was lacking. Here, we show that transfection of tau in mature hippocampal neurons leads to an improper distribution of tau into the so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Alzheimer's disease : JAD

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2013